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Application of Special Variance Estimators to Geodesy 

John D. Bossler 
Robert H. Hanson 

National Geodetic Survey 
National Ocean Survey, NOAA 

Rockville, Md. 20852 

Abstract. Special variance estimators are computed and analyzed for a standard 
geodetic network adjustment. One important estimator requires the computation of 
noninteger degrees of freedom. An analysis is performed on the results obtained 
from constraining the coordinates of peripheral network stations by a priori 

variances. 

1. Introduction 

This report has two purposes. The first is to discuss 

and analyze the application of special variance esti­
mators to a standard geodetic triangulation network 

adjustment. The second is to analyze the results ob­
tained when the coordinates of peripheral network 
stations are constrained by a wide range of a priori 
variances. These variances obviously determine the 
distortions of interior observations caused by con­
straining the previously adjusted border station coor­
dinates. 

Using equations formulated by Theil (1963), a 
variance estimator is used that requires the computa­
tion of "non integer degrees of freedom." Theil's 
derivation was underlain by a Bayesian point of view, 
involving the introduction of prior probability den­
sities on parameters (Bossler 1972). The question of 
whether these prior densities should be used to incor­
porate subjective opinion, or should be restricted to 
more concrete types of prior knowledge, belongs to 

the study of the possible interpretations of prob­

ability, an always controversial subject, and not our 
concern here. In this paper, we assume prior 
variances (actually the entire variance-covariance 
matrix) to be known, although in fact we do vary 
their common scale throughout its range for the sake 
of the resulting sensitivity analysis. One might also 
consider varying the prior values of (or a scale in) the 

variances of the observations; but in the case at hand, 
and as assumed by Theil, a good value of this scale 
factor is already available from a free adjustment. 

We follow Theil in distinguishing between observa­
tions on the one hand, and parameters having 
associated prior variances on the other. However, it 
is worth noting that the latter can be regarded as con­
stituting only another group of observations of a very 
particular type. 

The occurrence of non integral degrees of freedom, 

apart from its intuitive appeal, is to be expected at 
some point in any generalized variance estimation 
scheme that involves distinguishing the unknown true 
values of prior variances from their preliminary 
values by unknown multiplicative constants (more 

than one) or variances factors, which are to be 

estimated from the data at hand. In contrast to the 
usual derivation (leading to integral degrees of free­

dom) in which there is only one such factor common 
to all prior variances, here the unknown factor oc­
curs only in the variances on the observations of 
distances, directions, and azimuths. Theil's formulas 
allow us to incorporate the additional information 

contained in prior variances on parameters into the 
estimation of this variance factor in a consistent way. 

2. Description of the Test 
Network 

A 67-station horizontal triangulation network 

located in northwest Arkansas (fig. 1) was selected 
for our purposes. This network was originally de­

signed to provide a greater density of control in a 
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region with sparse horizontal control. The geodetic 
network consists of 47 new stations encircled by 20 
stations which were previously adjusted in several 
other triangulation arcs. Such a fill-in network is 
generally referred to as "area work" and is typical of 
most networks of this size in the United States. 
Observations were made between May and October, 
1971, using first-order procedures. Table 1 lists the 
types and quantities of the observations used in the 
adjustment, together with the equations for com­
puting their a priori variances. Prior to these ad­

justments, all spurious observations were eliminated 
by extensive preprocessing and procedural checks to 

assure excellent data quality. 

TABLE 1. -Network observations 

Type of 
Quantity l/assigned weight 

observations 

Old stations 
(part of exist-
ing arcs) 20 See section 4.2 

New stations 47 0 

Directions 538* a2 = (0.6)2 + 2(0.001/ 
D sin 1']2 

Distances 47 a2 = (15.0)2 + (D X 10-6)2 

+ (0.OOOO5LlH/3)2 

Azimuths 4 a2 = 0.452 + 0.802 + (tan cp/ 
0.80)2 + (0.40 sin cp)2 

• Adjustment included 136 lists of directions. 

c/> = latitude. 

D = distance in meters. 

/lH = height difference in meters. 

3. Description of the Problem 

Geodesists have performed geodetic adjustments 

in the past using direct observations of unknown 
parameters (Schmid and Schmid 1965). In our study 
we assumed a priori knowledge associated with the 20 
points surrounding the border of the triangulation 
network shown in figure 1. Latitude and longitude 
coordinates of each point were assumed, along with 
both known and estimated variances of these param­
eters. The data adjustments were based on the stand­

ard errors shown in table 2 (sec. 4.2). Results ob­
tained from the combined adjustment (old arc and 
new area work) are given in section 4. Of singular in­
terest is the computation and analysis of the a pos­
teriori estimator of the variance of unit weight of the 

direction and distance observations, a�L. The nota­
tion A differentiates between the estimated and the 
true (or known) value. 

We use here an estimator derived by Theil (1963) 

that was brought to the attention of the geodetic 
community by Bossler (1972). It accounts for the a 
priori knowledge associated with the known 

variances of the known latitudes and longitudes in a 
certain fashion. The derivation leads to a noninteger 

value for the degrees of freedom. This notation and 
the associated concept of a continuous range for the 
degrees of freedom appeal to initial intuition when 
pondering the question of whether the assigned 
latitude and longitude values are observations or 

unknowns. We believe our study is the first docu­
mented large-scale geodetic application of Theil's 
concept. It is especially reassuring to note that the 
results achieved with these techniques do not depart 
significantly from those computed in the traditional 
manner. 

4. Combined Geodetic 
Adjustment 

4.1 Results of the Free Adjustment 
A "free" adjustment of the 67 stations indicated 

that the quality of the data was excellent. Here, free 

adjustment means that the coordinates of one point 

were held fixed by heavily weighting that particular 
latitude and longitude. All azimuths and distances 
were entered into the adjustment and assigned the 
weights (the reciprocal of the variances) shown in 

table 1. After the initial solution one iteration was re­
quired, using the NGS TRAVlO program (Schwarz 
1978), for this adjustment and all others described in 
this report. 

The estimated variance of unit weight from the 
free adjustment was 

where 

'
2 - V'PV 

-0 968· n-u=321 aOL - n - u - . , 

a�L is the estimated variance of unit weight, 

V is a column vector of residuals, and 

P is the observational weight matrix. 

Note that a�L P-l = I:L, where I:L is defined as the 
matrix of the true variances of the observations. The 
quantity n -u is normally referred to as "degrees of 
freedom" and is the number of observations, n, 

minus the number of unknown parameters, u, to be 
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FIGURE 1. -First-order, class II triangulation in northwestern Arkansas. 

solved. Incidentally, this value (0.968) is well within 
the x2 allowable limits at the 99-percent level. 

4.2 Results of Combined Adjustment 
After the free adjustment, a series of weighted ad­

justments was performed. For each, a common 
standard error (in meters) was assigned to the lati­
tudes and longitudes of the 20 stations around the 
border of the triangulation scheme shown in figure 1. 

The values ranged from 

�112_(� )112_ [0.0001 ° ] '-' - '-' ''' ,X - ° 0.0001 

to ( � )1/2 _ [ 100.0 ° ] '-' ''' ,X - ° 100.0 

The reason for performing these adjustments was to 
"fit" the 47-station net into the larger net defined by 
the 20 border points shown in figure 1. Thirty-five ad-

justments were performed in which the elements of 
the diagonal matrix (1:""X)1/2 generally were varied by 
increments of 0.01 meter (table 2). 

We plotted Theil's estimator, a5T, which may be a 

more appropriate estimate for u5L, as a function of 
the a priori standard errors. This is shown in figure 2. 

The method of computing a5T for these cases is 
discussed in the following section. Note that the 
crossover point (the point at which the curve crosses 

a5T = 1.00) occurs at (1:""X)1/2 "'" 0.25 m, which is a 
reasonable value for the a priori standard errors in 

the latitude and longitude of the border points. This 

value can be considered as the point at which the 
"new" work was not unduly distorted before it was 
combined with the old work. This is also evidenced 
by examination of the residuals and coordinate 
shifts. For the average distance between the border 
points ("'" 17 km) the error (0.25 m) amounts to 

"'" 1150,000 (.)2 x 0.25/17,000), which is compatible 



4 

TABLE 2. - Assigned a priori standard errors and 
their associated integer and 

non integer degrees of freedom 

Integer Noninteger 
Uq, = u). 

degrees of degrees of 
(meters) 

freedom freedom 

0.0001 359 359.00 
.00 10 359 358.86 
.0 100 359 350.05 
.0300 359 335.32 
.0500 359 329.75 
.0600 359 328.19 
.0700 359 327.04 
.0800 359 326.18 
.0900 359 325.51 
.1000 359 324.98 
.1100 359 324.56 
. 1200 359 324.22 
. 1300 359 323.93 
. 1400 359 323.69 
.1500 359 323.49 
.1600 359 323.32 
.1800 359 323.05 
.2000 359 322.83 
.2500 359 322.48 
.2700 359 322.37 
.2800 359 322.33 
.2900 359 322.29 
.3000 359 322.25 
.3100 359 322.2 1 
.3200 359 322.18 
.3300 359 322.14 
.3500 359 322.08 
.4000 359 321. 96 
.4500 359 321.86 
.5000 359 32 1.77 
.5500 359 32 1.70 
.7500 359 32 1.48 

1.0000 359 32 1.32 
10.0000 359 321.00 

100.0000 359 321.00 
--

with the quality of the surrounding network (caused 
primarily by past distortions). 

4.3 Discussion of the Combined 
Adjustment 

Weighting the "old" border points is an attractive 
alternative to fixing the border points and distorting 
the new observations. The main disadvantage of this 
approach is that the coordinates of the border points 
would change. Imagine coordinates established in 
1983 through a new adjustment (as proposed by the 
countries of North America) being changed again in 
1984 as a result of incorporating new observations. 

Such a solution would clearly be unappealing. How­
ever, if new observations were badly distorted, this 
too would be objectionable. 

An attractive alternative is given by Blaha (1974). 
For the conterminous United States, it is expected 
that we will be able to fit future observations into the 

1984 framework without distorting them and, at the 
same time, hold the 1983 coordinates rigorously 
fixed. For areas other than the United States, where 

the triangulation is less dense, the method of 
weighting the parameters, as described in our com­
bined adjustment, provides several advantages. 

5. Theil's Estimators 

In all geodetic adjustments that use the standard 
least-squares model shown below, the a priori or 
given estimates for the variance-covariance matrix, 
l:L' must be accepted or an improved estimator deter­

mined for a5L in the adjustment process itself. 
a5L is the scalar portion of l:L' 

L A X + E 

(nxl) (nxu) (uxl) (nxl) 

where 

£(L)=AX 

£, a linear operator, is the expectation operator, 

L is an observation vector, 
A is a matrix of constants, 
X is a true vector of parameters to be estimated, 

and 
E is a stochastic vector of errors. 

L 
The notation 

(n X 1) 
defines a vector of n rows and 

one column; hence, 
( 

A 
) 

describes a matrix of n 
nxu 

rows and u columns. 

There are many possibilities for estimating a5L• For 
example, Rao (1965) has shown that the estimator 

'2 V'PV . b' d ' £('2 ) 2 aOL = --- IS un lase , I.e., aOL = aoL• 
n-u 

This is the best estimator in the Gauss-Markov sense, 

although other estimators may be more efficient or 
possess other desirable attributes. 

Theil (1963) developed an estimator which is intui­

tively appealing. A summary of the computation pro­
cedures for Theil's derivation follows: The model 
L = AX can be partitioned further, thereby obtaining 

two sets of matrix equations: 
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Thei I 
conventional 

O.O+-----�------�----�------�----�------�----�------�----�------, 

where 

and 

where 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
u¢ = U A (meters) 

FIGURE 2. - Estimators aOT and &oc as functions of the a priori standard errors a .. and ax. 

L A X + f 
(n x l) (n x u) (u x l) (n x l) 

E(f) =0 
E(f1/') =0 

X +. 1/ 
(u, x l) (u, x l) 

(1) 

(2) 

Equations (2) represent the direct observations of the 

unknown parameters X that will be incorporated into 
a combined adjustment of equations (1) and (2). �x is 

the true variance-covariance matrix of the latitudes 
and longitudes of the 20 border stations. 

To compute Theil's estimator, the standard least­
squares solution is first determined using only the 
data from equation (1), which yields 

X= (A'PAt' A'PL and 

where 

V=AX-L. 

Then, 
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Finally, 

�2 _ (AX -L)'P (AX -L) uoT- n - u 

where 

u=tr [a��A'PA (a��A'PA+1:�'t']. 

It is possible that a�T may be a more appropriate 
estimate of U�L' It must be emphasized that 1:x was 
considered to be known. The final estimated 

covariance matrix for the parameters, X, is given by 

1: - = [_I _A1PA + 1:-'] -' . XT '"'2 x UOT 

Note that ii, the number of unknowns, is not an in­

teger value due to the influence of the a priori infor­
mation (Lx). If 

1:i' = 0 (no a priori information), 

u=tr [ao�A'PA [ao�A'PA]-']=u. 

Theil (1963: p. 413) shows that this (biased) estimator 
(a�T) contains a bias that has a higher order of 
smallness than lin and, therefore, is quite adequate 
for large samples. For a complete derivation of a�T 
and other interesting attributes of this estimator, the 
reader is referred to Theil (1963). Table 2 lists the 
values for n - u + u, and n - U, the integer and non­
integer degrees of freedom, respectively. 

Another commonly computed estimator was ob­
tained to allow a comparison of the two final 
variance-covariance matrices -Theil's and the one 
most commonly computed. This estimator is denoted 
by a�c' Actually, the estimators a�T and a�c are not 
directly comparable because a�T is an alternate 
method for a�L' whereas a�c is normally used to scale 
the final entire variance-covariance matrix. This will 
be shown later. Nevertheless, because of their similar 
properties, both standard errors of unit weight (aoc 
and aOT) corresponding to these estimates are plotted 
in figure 2. 

To summarize, the following values were com­

puted: 

a5L = a constant (0.968) representing the most fre­
quently computed estimate of the variance 
for the triangulation observations without 
constraints. 

U5T = Theil's estimator for the variance of the 
distance and direction (triangulation) obser­
vations. This estimator varied as a function 

of the a priori variances assigned to the 20 
border stations. 

a5c = the normally computed "geodetic" estimator 
used in this type of problem, including tri­
angulation observations and constraints (see 
below for definition). 

where 

I=[t] 
.
4= [1] 
_ [(n� n) 
P= 0 

and 

Finally, 

(AX -L)' P (AX -L) 
n-u+ u, 

o ] 
P, 

(u, xu,) 

These estimators are further described in table 3. 

TABLE 3. - Computational analysis of estimators 

Model 
Equations 

Conditions Estimator 
used 

(1) 1:, = 0, P known, �2 uOL 
U5L to be estimated 

2 (1) and (2) 1:, and P known, �2 uOT 
U5L to be estimated 

3 (1) and (2) P and P, known, �2 uOc 
u�c to be estimated 



6. Description of the Computer 
Program 

The geodetic horizontal adjustment program, 

TRAVlO, was chosen to implement the techniques 
discussed in this report and to generate conventional­
ly computed comparison data. This program is ideal­

ly suited for several reasons: It takes advantage of the 
natural sparseness of geodetic network normal equa­
tions by automatically reordering the unknowns to 
minimize storage and computing requirements. Bulk 
data are stored on disks when not in use, further 

minimizing internal storage requirements. Inverses of 
partial normal equation matrices can be generated 

efficiently. In addition, the modular construction of 
the program makes it easier to understand, modify, 
and supplement. 

For our purposes TRAVlO was modified to batch 
run a series of problems using one set of observations 

and a variable set of station coordinate conEtraints. 
For any given set of constraints TRAVlO first com­

puted a free adjustment, using all given directions, 
distances, and azimuths. The program "fixed" the last 
pair of station position coordinates by detecting 
numerical singularities and filling the last two rows of 
the reduced normals with zeros. Following the free 

adjustment, two complete adjustments were made 
for each value of station coordinate constraints in the 

set. The first was a conventional adjustment, using 

the reciprocals of the input coordinate variances as 
weights. The second adjustment employed Theil's 
procedure, as described in section 5. Because our 

geodetic application was nonlinear, Theil's equations 
required the usual modifications used for non-linear 
problems. Each adjustment was iterated once for a 
total of two solution passes. 

7. Conclusions 
These conclusions pertain only to the computation 

and analysis of the estimators given in table 3. In 
most scientific least-squares applications a5c is deter­
mined and used to compute the final estimates for the 

unknown variances (i.e., to scale the final covariance 
matrix). Practitioners assume implicitly that the 

structure (except for the unknown scalar) of the 

observational weight matrix P, and the weight matrix 
for the parameters Px , are known a priori. Generally 
this assumption is quite reasonable. 

It is usually assumed that only one scalar quantity, 
viz., a5c' is required to scale the final estimated 
covariance matrix of the parameters in the following 
manner: 

7 

This may be a reasonable assumption depending 

on the relationship between the relative dispersion of 
the observations, L, and the observations, Lx. If Ex is 

known to be significantly better than EL , or vice ver­
sa, then it would not be appropriate to scale the en­
tire matrix (A'PA + Pxtl by the common scalar U5c. 
If it is assumed, however, that Px = E�', i.e., the 
variances or weights for the parameters are known a 
priori and do not need to be scaled after the adjust­
ment, the appropriate application of Theil's 

estimator, a5T, is probably the most reasonable 

choice. 
Figure 3 shows the plotted root mean square (rms) 

for each of the final variance-covariance matrices for 

both estimators EXT and Exc. The rms is defined as: 

� [ trace Ex ] 1/2 
rms,,",x= 

u 

where u is the number of unknown parameters 

(weighted or unweighted). An examination of figure 
3 reveals several comforting facts. First, the separa­
tion between the lines is small when compared to the 
total range of rmsEx. This indicates that our conven­
tional estimates are consistent with Theil's. Second, 

near the more reasonable values of Ei2 C,.,,0.30 m) 
the values are almost identical. For small values of 

E;12 (large weights), the conventional estimates are 
conservative. This is most fortunate because geo­
desists often use unreasonably large weights to hold 
parameters fixed and would prefer a more conser­
vative estimate. 

These conclusions are reassuring for users who are 
presently computing a�c because, in most cases, 

estimates of accuracies are too optimistic. Further­
more, the computation of Theil's estimator is com­

plicated and expensive. We concluded it is more con­
servative and economical (for computer costs) to 
compute a�c' using the derived value to obtain a final 
estimated variance-covariance matrix for the param­
eters. Because this has been the usual procedure, our 

results confirmed past practice. 
It is reasonable to ask whether this concept can be 

extended to adjustments containing more than two 

components of variance, one (or more) of which may 
be assumed known. It appears that a method for a 
general model II (random effects) analysis of variance 
can be based on equations similar to those used in 
this paper. This provides a relatively cheap alter­
native to MINQUE, described in Roa and Mitra 

(1971), or other existing methods for ANOVA II. 
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